How Does Trade Openness Affect Real Income Volatility? Evidence from India's Famine Era

Robin Burgess¹ Dave Donaldson²

¹LSE, CEPR and NBER

²MIT, CIFAR and NBER

Volatility and Livelihoods

- Climatic shocks (which affect productivity) make rural, aricultural economies extremely volatile places in which to live.
 - Incomes fall
 - Prices of important consumption goods rise
 - \Rightarrow Real incomes affected.
- Recent work has highlighted some dire consequences of these shocks
 - Output, consumption, investment fall
 - Mortality rises (dramatically in some cases)
- Open question: What can be done to dampen real income volatility?

Volatility and Trade Openness

- Our question: Does openness to trade exacerbate or dampen real income volatility?
- Theory of how trade openness affects the volatility of real incomes is ambiguous
 - Prices: stablilize
 - Nominal incomes: more volatile (Newbery-Stiglitz (1981) and specialization of production)
 - Real incomes: unclear

• Existing empirical evidence inconclusive.

Approach of This Paper

- Focus on case of extreme volatility: Famines in colonial-era India
 - 15-30 million famine deaths between 1875 and 1919 (when population \sim 150 million)
- Observable source of volatility: Rainfall
 - Indian agriculture was "a gamble in monsoons"
- Dramatic change in openness to trade: Arrival of Railroads

Preview of Results

- Exploit methodology that explores how railroads changed the equilibrium 'responsiveness' of various outcome variables to rainfall (ie productivity) shocks.
- Results from number of outcomes follow pattern suggested by simple model:
 - Prices: less responsive.
 - Nominal incomes: more responsive.
 - Real incomes: less responsive.
 - Mortality rate: less responsive (virtually disappears).
 - 'Famine' index: less responsive (virtually disappears).

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

The Colonial Indian Economy

• Primarily agricultural:

- 66 % of GDP in 1900 (Heston 1983)
- Agriculture was primarily rain-fed: 14 % irrigation in 1900
- Rainfall was extremely volatile

Volatility of Rainfall

Famines in Colonial India

- No consistent official definition of 'famine' applied
- But generally characterized by:
 - Crop failure
 - Knowles (1924): "agricultural lockouts, where both food supplies and agricultural employment, on which the bulk of the rural population depends, plummet"
 - High food prices
 - Excess death

An Index of Famine Severity

- Srivastava (1968) catalogs all 'famines and food scarcities' between 1861 and 1919
 - Deliberately stopped there, as no famines after that until 1942
- Each event was described (and some mapped) consistently, and in considerable detail
- We use these descriptions to code each district and year according to:
 - $F_{dt} = 0$: no mention in Srivastava (1968)
 - $F_{dt} = 1$: described as "mild food scarcity"
 - $F_{dt} = 2$: "famine", but "not severe"
 - $F_{dt} = 3$: "severe famine"

Famine Intensity: 1860-1869 Average

Famine Intensity: 1870-1879 Average

Famine Intensity: 1880-1889 Average

Famine Intensity: 1890-1899 Average

Famine Intensity: 1900-1909 Average

Famine Intensity: 1910-1919 Average

Transportation in Colonial India

- Pre-rail transportation (Deloche 1994, 1995):
 - Roads: bullocks, 10-30 km per day (ie 2-3 months to port)
 - Rivers: seasonal, slow
 - Coasts: limited port access for steamships
- Railroad transportation:
 - Faster: 600 km per day
 - Safer: predictable, year-round, limited damage, limited piracy
 - Cheaper:
 - $\sim 4.5 imes$ cheaper than roads
 - $\sim 3 imes$ cheaper than rivers
 - $\sim 2 imes$ cheaper than coast
 - Donaldson (2008): Aggregates these benefits together ⇒ railroads 'shrunk distance' by a factor of 8 relative to roads.

Railroads and Famine Prevention

- Active debate at the time over whether railroads were good or bad for famine-prevention
 - 1880 Famine Commission influenced by Smith (1776): "...the drought [in "rice countries"] is, perhaps, scarce ever so universal as necessarily to occasion a famine, if the government would allow a free trade." ⇒ Recommended a number of railroads to be constructed as 'famine lines'.
 - Gandhi (1938) and Nationalist Historians: "Railroads increased the frequency of famines, because, owing to the facility of means of locomotion, people sell out their grains, and it is sent to the dearest markets."

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Model Set-up

- Multi-sector version of Eaton and Kortum (2002)—general equilibrium with:
 - Many (≥ 2) regions
 - Many (≥ 2) goods
 - Trade costs $T \in [1,\infty)$
- K goods (e.g. rice, wheat):
 - indexed by k
 - each available in continuum of varieties (j)
- D regions (districts, foreign countries)
 - o = origin
 - d = destination
- Static model: study 'volatility' through comparative statics on exogenous variable that is stochastic in reality.

Model Environment

• Technology:
$$q_o^k(j) = L_o^k z_o^k(j)$$
 $p_{oo}^k(j) = \frac{r_o}{z_o^k(j)}$

$$z_o^k(j) \sim F_o^k(z) = \exp(-A_o^k z^{- heta_k})$$

Model Environment

• Technology:
$$q_o^k(j) = L_o^k z_o^k(j)$$
 $p_{oo}^k(j) = \frac{r_o}{z_o^k(j)}$

$$z_o^k(j) \sim F_o^k(z) = \exp(-A_o^k z^{- heta_k})$$

• Tastes:
$$U_o = \sum_{k=1}^{K} \left(\frac{\mu_k}{\varepsilon_k} \right) \ln \left(\int_0^1 (C_d^k(j))^{\varepsilon_k} dj \right)$$

Model Environment

• Technology:
$$q_o^k(j) = L_o^k z_o^k(j)$$
 $p_{oo}^k(j) = \frac{r_o}{z_o^k(j)}$

$$z_o^k(j) \sim F_o^k(z) = \exp(-A_o^k z^{- heta_k})$$

• Tastes:
$$U_o = \sum_{k=1}^{K} \left(rac{\mu_k}{arepsilon_k}
ight) \ln \left(\int_0^1 (C_d^k(j))^{arepsilon_k} dj
ight)$$

• Trading: iceberg trade costs $T_{od}^k \ge 1$, $T_{oo}^k = 1$

$$\Rightarrow p_{od}^k(j) = T_{od}^k p_{oo}^k(j)$$

Prediction 1: Railroads reduce price responsiveness

• Prices:
$$p_d^k = \lambda_1^k \left[\sum_{o=1}^D A_o^k \left(r_o T_{od}^k \right)^{-\theta_k} \right]^{-1/\theta_k}$$

 Prediction 1: Price responsiveness (^{dp}/_{dA}) and trade costs (T) around symmetric equilibrium (and 3 countries, 1 commodity):

Prediction 2: Railroads increase nominal income responsiveness

- This follows from simple intuition in Newbery and Stiglitz (1981) or Rodrik (1997):
 - Nominal incomes: $P \times Q$.
 - Volatility in Q is technological and can't be altered.
 - Volatility in *P* is endogenous and depends on demand curve. But in conventional settings, *P* will move to offset *Q*.
 - So lack of price responsiveness acts as insurance, for nominal incomes.

Prediction 3: Railroads decrease real income responsiveness

• Taking *p_o* as the numeraire, and with *K* = 1, can write real income (welfare) as:

$$\ln r_o = \frac{1}{\theta} \ln A_o + \frac{1}{\theta} \ln \left[1 + \frac{1}{r_o L_o} \sum_{d \neq o} r_d L_d (T_{od})^{-1/\theta} p_d^{\theta} \right]$$

• Prediction 3: Around symmetric equilibrium (and 3 countries, 1 commodity):

$$\frac{d}{dT_{od}^{k}} \left| \frac{d(\frac{r_{o}}{\widetilde{P}_{o}})}{dA_{o}} \right| > 0$$

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Econometric Specification

• Estimate regressions of following form:

$$Y_{dt} = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIL_{dt} \times RAIN_{dt} + \varepsilon_{dt}$$

- We think of γ_3 as 'responsiveness'.
- Where:
 - *Y*_{dt} is a outcome variable of interest: prices, nominal incomes, real incomes, mortality rate, famine index.
 - *RAIL_{dt}* is a dummy variable for railroad penetration.
 - *RAIN_{dt}* is total amount of annual rainfall.

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness

Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Price Responsiveness

• Recall Prediction 1:

$$\frac{d}{dT_{dot}^{k}}\left|\frac{dp_{dt}^{k}}{dA_{dt}^{k}}\right| > 0$$

• Suggests linear approximation:

$$\begin{aligned} & \ln p_{dt}^{k} = \beta_{d}^{k} + \beta_{t}^{k} + \beta_{dt} \\ & + \chi_{1} RAIN_{dt}^{k} + \chi_{2} RAIN_{dt}^{k} \times RAIL_{dt} + \varepsilon_{dt}^{k} \end{aligned}$$

- Data:
 - $p_{dt}^k = avg$ retail price in 239 districts, for 17 crops, annually 1861-1930
 - RAIN^K_{dt} = amount of rain over district-crop growing period
 - Crop Calendar and daily rain from 3614 gauges

▶ Rain gauges

 $\ln p_{dt}^k = \beta_d^k + \beta_t^k + \beta_{dt} + \chi_1 RAIN_{dt}^k + \chi_2 RAIN_{dt}^k \times RAIL_{dt} + \varepsilon_{dt}^k$

Dopondont variable: log price	015	015	015	015
Dependent variable. log price	UL3	UL3	UL3	UL3
	(1)	(2)	(3)	(4)
Local rainfall	-0.256			
	(0.4.02)**			
	(0.102)**			
(Local rainfall) x (Railroad in district)				
(
Neighboring district rainfall				
(Neighboring district rainfall) x				
(Connected to neighbor by rail)				
Observations	73,000			
R-squared	0.89			

Note: Regressions include crop x year, district x year and district x crop fixed effects. OLS standard errors clustered at the district level.

 $\ln p_{dt}^k = \beta_d^k + \beta_t^k + \beta_{dt} + \chi_1 RAIN_{dt}^k + \chi_2 RAIN_{dt}^k \times RAIL_{dt} + \varepsilon_{dt}^k$

Dependent variable: log price	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)
Local rainfall	-0.256	-0.428		
	(0.102)**	(0.184)***		
(Local rainfall) x (Railroad in district)		0.414		
		(0.195)**		
Neighboring district rainfall				
(Neighboring district rainfall) x				
(Connected to neighbor by rail)				
Observations	73,000	73,000		
R-squared	0.89	0.89		
Note: Regressions include crop x year, district x year an district level.	d district x crop	fixed effects. OLS	standard errors	clustered at the

 $\ln p_{dt}^k = \beta_d^k + \beta_t^k + \beta_{dt} + \chi_1 RAIN_{dt}^k + \chi_2 RAIN_{dt}^k \times RAIL_{dt} + \varepsilon_{dt}^k$

Dependent variable: log price	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)
Local rainfall	-0.256	-0.428	-0.402	
	(0.102)**	(0.184)***	(0.125)***	
(Local rainfall) x (Railroad in district)		0.414	0.375	
		(0.195)**	(0.184)*	
Neighboring district rainfall			-0.021	
			(0.018)	
(Neighboring district rainfall) x			-0.082	
(Connected to neighbor by rail)			(0.036)**	
Observations	73,000	73,000	73,000	
R-squared	0.89	0.89	0.90	
Note: Regressions include crop x year, district x year an district level.	d district x crop	fixed effects. OL	S standard errors	clustered at the

 $\ln p_{dt}^k = \beta_d^k + \beta_t^k + \beta_{dt} + \chi_1 RAIN_{dt}^k + \chi_2 RAIN_{dt}^k \times RAIL_{dt} + \varepsilon_{dt}^k$

Dependent variable: log price	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)
Local rainfall	-0.256	-0.428	-0.402	0.004
	(0.102)**	(0.184)***	(0.125)***	(0.035)
(Local rainfall) x (Railroad in district)		0.414	0.375	0.024
		(0.195)**	(0.184)*	(0.120)
Neighboring district rainfall			-0.021 (0.018)	Î
(Neighboring district rainfall) x			-0.082	Colt
(Connected to neighbor by rail)			(0.036)**	Salt
Observations	73,000	73,000	73,000	8,489
R-squared	0.89	0.89	0.90	0.53
Note: Regressions include crop x year, district x year an district level.	d district x crop	fixed effects. OL	S standard errors of	clustered at the

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Nominal Income Responsiveness

• Recall Prediction 2:

$$\left| \frac{d}{dT_{dot}} \left| \frac{dr_{dt}}{dA_{dt}} \right| < 0$$

• Suggests linear approximation:

$$\begin{aligned} \ln r_{dt} &= \alpha_d + & \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} \\ &+ & \gamma_3 RAIL_{dt} \times RAIN_{dt} + \varepsilon_{dt} \end{aligned}$$

- Data:
 - r_{ot}L_o = ∑_k p^k_{ot}q^k_{ot} (NB: ≠ ∫ p^k_{ot}(j)q^k_{ot}(j)dj), 17 agricultural crops (ignores: taxes/transfers, intermediate inputs, income from other sectors, income inequality)
 - Annually for 239 districts, 1870-1930.

Results: Nom. Income Responsiveness

 $\ln r_{dt} = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS
log nominal agricultural income	(1)
Railroad in district	0.241 (0.114)*
Rainfall in district	1.410 (0.632)***
(Railroad in district)*(Rainfall in district)	
Observations	14,340
R-squared	0.771
Note: Regressions include district and year fixed effects, and effects. QLS standard errors clustered at the district level.	d control for neighboring region railroad

Results: Nom. Income Responsiveness

 $\ln r_{dt} = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS	OLS
log nominal agricultural income	(1)	(2)
Railroad in district	0.241 (0.114)*	0.168 (0.082)**
Rainfall in district	1.410 (0.632)***	0.532 (0.249)**
(Railroad in district)*(Rainfall in district)		0.901 (0.444)**
Observations	14,340	14,340
R-squared	0.771	0.775
Note: Regressions include district and year fixed effects, and co	ontrol for neighborir	ng region railroad

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness

Real income responsiveness

Mortality responsiveness "Famine" index responsiveness

Conclusion

Real Income Responsiveness

• Recall Prediction 3:

$$\frac{d}{dT_{dot}}\left|\frac{d\left(\frac{r_{dt}}{\tilde{P}_{dt}}\right)}{dA_{dt}}\right| > 0$$

• Suggests linear approximation:

$$\ln\left(\frac{r_{dt}}{\widetilde{P}_{dt}}\right) = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIL_{dt} \times RAIN_{dt} + \varepsilon_{dt}$$

- Data:
 - $\tilde{P}_{ot} = (\text{chain-weighted})$ Fisher ideal price index, 17 agricultural crops (ignores: other costs of living, gains from new varieties)
 - Annually for 239 districts, 1870-1930.

Results: Real Income Responsiveness $\ln\left(\frac{r_{dt}}{\overline{P}_{dt}}\right) = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS
log real agricultural income	(1)
Railroad in district	0.186 (0.085)**
Rainfall in district	1.248 (0.430)***
(Railroad in district)*(Rainfall in distric	t)
Observations	14,340
R-squared	0.767
Note: Regressions include district and year fixed effects, effects. OLS standard errors clustered at the district level	and control for neighboring region railroad

Results: Real Income Responsiveness $\ln\left(\frac{r_{dt}}{\overline{P}_{dt}}\right) = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS	OLS
log real agricultural income	(1)	(2)
Railroad in district	0.186 (0.085)**	0.252 (0.132)*
Rainfall in district	1.248 (0.430)***	2.434 (0.741)***
(Railroad in district)*(Rainfall in district)		-1.184 (0.482)**
Observations	14,340	14,340
R-squared	0.767	0.770
Note: Regressions include district and year fixed effects, and co effects. OLS standard errors clustered at the district level.	ontrol for neighbori	ng region railroad

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness

"Famine" index responsiveness

Conclusion

Mortality Responsiveness

- Mortality as consumption proxy:
 - Ideally would like to track consumption, to see how strongly real income volatility passes through into consumption volatility.
 - Unfortunately consumption is unobserved here.
 - However, in this low-income and low-health environment, the mortality rate may proxy for living standards (ie consumption).
- Data on mortality rate:
 - $M_{ot} =$ Crude death rate.
 - Mandatory vital event registration began in 1865. Registration was probably incomplete—Dyson (1991) uses census data to argue that registration was 70-90% complete (depending on the province).
 - Annually for 239 districts, 1870-1930.

Results: Mortality Responsiveness

 $\ln M_{dt} = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS
log mortality rate	(1)
Railroad in district	-0.080 (0.061)
Rainfall in district	-0.064 (0.032)**
(Railroad in district)*(Rainfall in dis	strict)
Observations	13,512
R-squared	0.642
Note: Regressions include district and year fixed e	ffects, and control for neighboring region railroad

effects. OLS standard errors clustered at the district level.

Results: Mortality Responsiveness

 $\ln M_{dt} = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIN_{dt} \times RAIL_{dt} + \varepsilon_{dt}$

Dependent variable:	OLS	OLS
log mortality rate	(1)	(2)
Railroad in district	-0.080 (0.061)	-0.143 (0.078)*
Rainfall in district	-0.064 (0.032)**	-0.145 (0.062)***
(Railroad in district)*(Rainfall in district)		0.123 (0.059)**
Observations	13,512	13,512
R-squared	0.642	0.647
Note: Regressions include district and year fixed effects, and con effects. QLS standard errors clustered at the district level.	ntrol for neighbori	ng region railroad

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Method and Results

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

"Famine" Index Responsiveness

- Previous results on mortality rate covered full continuum of mortality fluctuations.
- Focus here on extreme events that were explicitly referred to as "famines".
- Estimate latent variable model using ordered logit:

$$F_{dt}^* = \alpha_d + \beta_t + \gamma_1 RAIL_{dt} + \gamma_2 RAIN_{dt} + \gamma_3 RAIL_{dt} \times RAIN_{dt} + \varepsilon_{dt}$$

- Data on famine index:
 - *F*_{ot} = Index based on Srivastava (1968) classifications.
 - Annually for 239 districts, 1861-1919.

Dep. var.: Famine intensity index	(1)	(2)	(3)
Railroad in district	0.194		
	(0.374)		
Rainfall in district [year t]	-0.855***		
	(0.208)		

Dep. var.: Famine intensity index	(1)	(2)	(3)
Railroad in district	0.194	-1.625***	
	(0.374)	(0.572)	
Rainfall in district [year t]	-0.855*** (0.208)	-2.218*** (0.532)	
(Railroad in district)		1.858***	
x (Rainfall in district, year t)		(0.541)	

Dep. var.: Famine intensity index	(1)	(2)	(3)
Railroad in district	0.194 (0.374)	-1.625*** (0.572)	0.309 (0.390)
Rainfall in district [year t]	-0.855*** (0.208)	-2.218*** (0.532)	-0.860*** (0.204)
(Railroad in district)		1.858***	
x (Rainfall in district, year t)		(0.541)	
Rainfall in district [year t-1]			-0.699***
			(0.215)

Dep. var.: Famine intensity index	(4)	(5)	
Railroad in district	-2.178***		
Rainfall in district [year t]	-2.316*** (0.518)		
(Railroad in district) x (Rainfall in district, year t)	1.848*** (0.521)		
Rainfall in district [year t-1]	-1.171*** (0.395)		
(Railroad in district) x (Rainfall in district, year t - 1)	0.692* (0.404)		

Dep. var.: Famine intensity index	(4)	(5)	
Railroad in district	-2.178*** (0.690)	-2.136*** (0.754)	
Rainfall in district [year t]	-2.316*** (0.518)	-17.35 (20.40)	
(Railroad in district) x (Rainfall in district, year t)	1.848*** (0.521)	1.729*** (0.565)	
Rainfall in district [year t-1]	-1.171*** (0.395)	9.316 (21.51)	
(Railroad in district) x (Rainfall in district, year t - 1)	0.692* (0.404)	0.758* (0.458)	

Notes: Ordered logit regressions that include district fixed effects and year fixed effects. Standard errors clustered by district. Column (5) includes rainfall (in t) -times-trend and rainfall (in t-1)-times-trend interactions

Interpretation

- Results demonstrate role of railroads in strongly dampening equilibrium volatility, and in mitigating the weather-to-death mapping
- Cluster of results consistent with railroads enabling freer movement of food goods (and goods sold to pay for food)
- But other plausible interpretations for reduced-form mortality results:
 - Freer movement of people
 - Freer movement of capital
 - Freer movement of official famine relief (but there wasn't much of this)
 - Railroads made people richer (Donaldson, 2008)

Outline

Background: Rainfall, Famine and Railroads

Theoretical Framework

Price responsiveness Nominal income responsiveness Real income responsiveness Mortality responsiveness "Famine" index responsiveness

Conclusion

Conclusion

- Climate-induced volatility matters a great deal in some settings—eg Famines.
- Can trade openness mitigate the riskiness of economic life in developing countries?
- Dramatic change brought about by Indian railroads suggests that 'openness' can make a big difference:
 - Railroads virtually eliminated the effects of rainfall on famine/death in India.
 - Auxiliary results consistent with this phenomenon working through dampening real income volatility.

Daily Rainfall Data

3614 meteorological stations with rain gauges

